From Energy Access to Grid Resiliency: A Story of Anthropology, Engineering, and Business

September 14, 2018

- Dr. Nathan Johnson, Director and Assistant Professor
- Samantha Janko, Managing Director
- Nathan Webster, Graduate Research Assistant
- Shammya Saha, Graduate Research Assistant

Laboratory for Energy and Power Solutions (LEAPS) The Polytechnic School

Laboratory for Energy And Power Solutions

The Laboratory for Energy And Power Solutions (LEAPS) takes energy innovations from concept to construction with a focus on microgrids, off-grid solutions, smart networks, and capacity building.

Dr. Nathan Johnson manages the one-acre microgrid test bed and computational laboratory that combines simulation-based design with hands-on fabrication to create next-generation solutions to current market needs. The entire LEAPS team is active in technical development and service, and regularly participates in capacity building programs inside and outside standard curriculum.

- > 25-person research team including students and staff
- > Basic and applied research in microgrid simulation and control
- > One-acre microgrid test bed, planning expansion
- > Development leading to commercialization
- > New market opportunities for on-grid and off-grid solutions

Turning Ideas into Prototypes

Turning Prototypes into Reality

A plug-and-play environment for advanced energy research, development, testing, and education

Simulation and Design Environments

System/network design

Real-time simulations

Power hardware in the loop

Intelligent distributed controls

Grid Modernization & Microgrid Test Bed

Flexible microgrid designs

"Test bay" for new equipment

Campus-scale solutions

Testing and refinement

Grid Modernization

Critical Infrastructure

Off-grid Solutions

Workforce Development

Engineering Ethnography

2.7 Billion

1.0 Billion

Energy

Poverty

1.4 Billion

Improving understanding through qualitative and quantitative methods

Using participatory observation to gain deeper insights

Dissatisfaction *and* Aspiration

General needs

and

Specific interests

Let's take an example

Viewpoint

Judgment

Choice

Action

Detailed look into a single home (over 2,000 visited)

Taking cooking as a example

Engineering a value proposition - consumer

Removes pollution

Saves time

Johnson NG, Bryden KM. 2013. Clearing the air over cookstoves. DEM+ND. 1(1):8–13.

Value for money

Engineering a value proposition - product

Designing for Modularity

Forced draft stove

Locally sustainable fuel

Engineering a value proposition - business

Agyemang M, Johnson NG. 2015. "Development of biomass energy technologies and business models for Southern Africa," Proceedings of the 2015 ASME International Design Engineering and Technical Conferences and Computers and Information in Engineering Conference. Boston, Massachusetts. ¹⁸

Engineering a value proposition - business

Taking a broad look into needs and opportunities

Johnson NG, Bryden KM. 2012. Energy supply and use in a rural West African village. Energy. 43(1):283–92.

75% of all energy on cooking stoves

electricity use is a rounding error yet invaluable

no energy for economic development (value creation)

Containerized microgrids for disaster response

Challenge: Lack of critical infrastructure after disasters such as Matthew (Haiti), Maria (PR), Sandy (US). **Solution:** Turnkey microgrids packed into 20' and 40' containers for rapid deployment. Scalable 10-150 kW.

Ease of transport

Rapid deployment

Unpacked microgrid

20 kW solar PV 20 kWh Li-ion battery 20 kW diesel generator Microgrid controller

Dispatch and AGC

Video: http://tinyurl.com/yan5zlyy

Janko, S., Atkinson, S., & Johnson, N. (2016). Design and fabrication of a containerized micro-grid for disaster relief and off-grid applications. ASME 2016 International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering (CIE) Conference. American Society of Mechanical Engineers.

Universal charge controller for off-grid architectures

Challenge: 1.4 billion people without power; lots of solutions; high cost and no interoperability.

Solution: Custom 500W inverter for battery charging, solar home, DC microgrid, and AC microgrid.

Applications

Rural

Major features

- Inputs: 12/24/48 VDC, 110/220 VAC
- PWM charging from solar PV
- Current limiting
- Low-voltage disconnect and reconnect
- High-voltage disconnect
- Temperature control
- Lead-acid and Li-ion chemistries
- Pre-pay metering
- WiFi/900 MhZ communication
- Efficiency > 90%, cost < \$50

Saha, S., Janko, S., Johnson, N., Podmore, R., Riaud, A., & Larsen, R. (2016). A universal charge controller for integrating distributed energy resources. 2016 IEEE Global Humanitarian Technology Conference, 459-465

Universal charge controller for off-grid architectures

Configuration #2: Sunblazer

Configuration #3: AC Microgrid

Potable water for refugee host communities in scarce water regions

Challenge: Syrian refugees; insufficient potable water; limited access to grid; grid outages.

Solution: Custom 3.5kW inverter, VFD motor drive, and controls for reliable water treatment.

Water System

Reverse osmosis + UV

Power System

Grid + solar PV

Overview:

- Water scarce regions of Lebanon and Jordan
- 18 refugee host communities
- Water kiosks serve 2000 people daily
- 36,000 people total affected

Technical Outcomes:

- Reduce energy costs by 25-50%
- Increase system efficiency by 15-30%
- Provide energy autonomy up to 2 days

Technical Specifications:

- 2 kW Solar PV and battery storage
- 1,300 Liter/Hour reverse osmosis system
- Grid connection optional

Potable water for refugee host communities in scarce water regions

- Logic vs. model predictive control (MPC)
- MPC enables optimal energy usage

Potable water for refugee host communities in scarce water regions

- Commissioned prototype unit in Lebanon
- Decreased operational cost

Goal	Existing Solution	Generation 1	Generation 2
Cost of energy (\$/kWh)	.13	.065	.055
Energy per unit water (kWh/L)	.0011	.0011	.00056
Grid independent operation (hours)	0	3	3+

Challenge: Refugee camps; water access; limited access to grid; medical needs.

Solution: Provide turn-key capabilities to expeditionary naval, disaster response, and humanitarian aid applications.

- Off-grid, rapidly-deployable system with power, water, and healthcare
- Includes solar PV, backup generator, diesel fuel storage, a large capacity battery, UV water purification, and medical equipment
- Designed to be rapidly deployment on site for military bases, humanitarian needs, and disaster response

- Site visits are critical to the "empathize" design phase of engineering
- Understanding your end user's needs to build a system that addressed the actual problem (rather than the perceived problem)

Critical Infrastructure

Increasing stress on infrastructure uncovers more vulnerabilities

Challenge: Extreme weather events causing unforeseen failures in coupled infrastructure systems **Solution:** Quantify and simulate the effects of extreme events to improve planning and operations

Climate non-stationarity

The "slow bake" problem

Extreme events

Exacerbated weather incidents

We are trained as problem solvers but not as problem finders.

Problem Solvers

Known problem, scripted approach, one solution

LAUREL HEIGHTS

Problem Finders

Unknown problem, exploratory approach, multiple solutions

We need to advance our approach, tools, and training to become problem finders.

Quantifying the effect of extreme heat on US transmission infrastructure

transmission infrastructure summer peak demand climate models population growth line thermal limits reduction in ampacity

(line carrying capacity)

Burillo, D., Chester, M. V., Ruddell, B., & Johnson, N. (2017). Electricity demand planning forecasts should consider climate non-stationarity to maintain reserve margins during heat waves. Applied Energy, 206, 267-277.
Quantifying the effect of dust storm intensity and propagation on solar PV output reduction in Phoenix area

Dust storm intensity

Dust storm propagation

https://www.youtube.com/watch?v=vYnuzoH5oBA

Janko, S. A., Gorman, B. T., Singh, U. P., & Johnson, N. G. (2015). High penetration residential solar photovoltaics and the effects of dust storms on system net load. In ASME 2015 International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering (CIE) Conference. American Society of Mechanical Engineers.

But what about connections between infrastructures and interdependencies?

The Resilient Infrastructure Simulation Environment (RISE)

The **Resilient Infrastructure Simulation Environment (RISE)** is a real-time simulation and training environment that enables researchers and operators to test *network design configurations* and *operating strategies* to improve system resilience to environmental (e.g., extreme heat), anthropogenic, and cyber threats. <u>https://tinyurl.com/ybl65vn6</u>

Infrastructure Models

Power

Water

Gas

Transportation

Threat and Resiliency Simulation

Human Interaction

GIS Maps

SCADA

Infrastructure Management

Real-time Adaptation & Response

Gorman, B., Hamel, D., Bondank, E., Barela, E., Scott, S., Carmody, C., Lajom, A., Chester, M., Johnson, N. G. (2017). Real-time simulation and control of interdependent power and water networks using Resilient Infrastructure Simulation Environment (RISE). In ISSST.

What we model and measure

Temporal Domain	Spatial Domain					
	Local effect	Regional effect				
Fast-acting	 Grid voltage (power) Individual movement (social) Protection mechanisms (power) Network reconfiguration (power/cyber) Direct personal communication (social) 	 Grid frequency (power) Electrical resource adequacy (power) Social media traffic (social) SCADA denial of service (cyber) Reported outages (cyber/social) 				
Slow-acting	 Water pressure (water) Time allocation of activities (social) Power/water source selection (social) Communication format (cyber/social) "Waiter" malware (cyber) 	 Population movement (social) Loss of water availability (water) Fuel availability (power) Market operation (power/water) Direct personal communication (social) 				

But the connections and relationships between these are rarely tracked which leads to unknown vulnerabilities

Taking research into practice

Resiliency score & cost Cyber attack / controls

Resiliency planning, disaster risk reduction

XENDEE microgrid and distribution network design with costing

IncSys/PowerData PowerSimulator for real-time operation

Microgrid developers

Electric utilities and ISOs

ASU RISE network design and real-time operation

City and community planners, electric utilities

Grid Modernization

Power system equivalent model development for power electronics devices

Challenge: Power system equivalent model development of power electronics components

Solution: Developing equivalent simulation models mimicking the behavior of power electronics components

For a three-phase fault, the positive sequence power dropped immediately to zero for the case **with the greatest voltage dip (53%)** and decreased slowly to zero for smaller voltage dips as fault duration increased.

Saha, S. & Johnson, N. (2018). Point-on-wave analysis of three phase induction motor drive under fault external to the power plant. IEEE PES General Meeting.

Assessing the impact of business-as-usual residential solar PV

Challenge: Potential impact of residential solar assuming no technical, financial, or policy change (2015). **Solution:** Quantify and contrast potential future scenarios in US cities.

Janko, S., Arnold, M., & Johnson, N. (2016). Implications of highpenetration renewables for ratepayers and utilities in the residential solar photovoltaic (PV) market. Applied Energy, 180, 37-51.

IoT solutions for remote connectivity and control of building EMS

Challenge: Smart inverters lack capability for remote monitoring/control. Utilities forced to take generation. **Solution:** Provide seamless remote connectivity and interoperability to solar and other DER assets.

data

Web-based interface for viewing data and control

Smart Nodes with building-level EMS controller

Challenge: Greater uncertainty in loads due to increasing amounts of consumer-side technologies. **Solution:** Integrate control of all technologies in intelligent home EMS (HEMS); simple external portal.

Each 5-20kW "Smart Node" control solution is suitable for buildings, campuses, off-grid sites, and mobile power systems

On-board controls can dispatch assets with simple commands from the utility such as energy cost, net load set point, ancillary services

Model predictive control for scheduling DER assets

Challenge: Poorly coordinated asset scheduling limits cost savings and resiliency

Solution: Optimize near term control to accommodate future variability in resources

Model predictive control for scheduling DER assets

Rate Structure	тоυ			TOU + Demand				
Control Method	Baseline	Logic	Advanced	Advanced AS	Baseline	Logic	Advanced	Advanced AS
Yearly Bill (\$)	1764.90 (-)	871.92 (-50.6)	477.16 (-73.0)	525.61 (-70.2)	1534.47 (-)	738.51 (51.9)	567.09 (63.0)	672.76 (56.2)
On Peak Energy (kWh)	5775.33 (-)	181.99 (-96.9)	-912.67 (-115.8)	15.93 (-99.7)	5775.33 (-)	170.83 (-97.0)	-1221.86 (-121.2)	1988.7 (-65.6)

Distributed energy resource aggregation

- Challenge: Controlling the increasing number of distributed energy resources (DER).
- Solution: Aggregate the resources to enable cost savings and increased grid reliability.

Multi-agent facilitation of transactive energy networks

Challenge: Increase in distributed energy resources but no coordinated exchange market. **Solution:** Transactive energy networks to facilitate trading between microgrid nodes.

Janko, S. & Johnson, N. (2018). Scalable multi-agent microgrid negotiations for a transactive energy market. Applied Energy, 229, 715-727. 50

Multi-agent facilitation of transactive energy networks

51

Distributed security of grid-edge devices

Challenge: Security of grid-edge devices threatened by adversaries.

Solution: Advanced intrusion detection techniques coupled with distributed Blockchain ledgers.

IoT and "smart" vendors

DER product vendors

Infrastructure vendors

Distributed security of grid-edge devices

chip

Current Cyber-Physical Security Architecture

Distributed security of voltage regulating devices

Challenge: Stability of distribution network disrupted by cyberattacks.

Solution: Develop methodology and tools allowing automatic reconfiguration of distribution grids .

Inverters fail to converge to a stable point due to steep droop curve

Inverters converge to a stable operating point with updated droop curve

Rapid design and evaluation of microgrids and DER distribution

Challenge: Long time to design and quote. Each project is unique; start from scratch. Project management. **Solution:** Single tool combines analysis of generation, distribution, loads, economics. 90% time reduction.

Time series

Power flow

Modeling Overview: <u>https://youtu.be/-C0E5j9prxo</u> SnapShot Power Flow: <u>https://youtu.be/3F1ay5CazCQ</u> Google Maps Integration: <u>https://youtu.be/QwA2IMMU-Nk</u>

Workforce Development

LEAPS workforce development

Our eight training programs support the advancement of **microgrid project funders/managers**, **engineers**, **technicians**, **operators**, and **installers** through in-person workshops and online content delivery.

Entity	Training	Delivery	Capacity	Trained so Far	Comments
ASU	Microgrid Boot Camp	In-person	20/session	80	Five days, offered twice per year at ASU
ASU	Microgrid Master Class	In-person	Varies	100	One or two days, offered anywhere
ASU/HNEI	Grid Resiliency	In-person	20/session	Upcoming	Two days, offered once per year at ASU
ASU	Microgrid Design and Control	In-person	25/session	25	Three-credit special topics course at ASU
IncSys	Grid Cybersecurity	In-person	25/session	20	Two days, offered once per year at ASU
IncSys	Power4Vets	Online	10/session	20	90-hours online, available anytime
ASU/XENDEE	Microgrid Design	Online	N/A	Upcoming	20-hours online, available anytime
BlockFrame	New Cyber Frontier	Online	N/A	No data	Online cybersecurity show, monthly

ASU collaborate with **HNEI**, **IncSys**, **XENDEE**, and **BlockFrame** to create and deliver training materials and programs to benefit civilians, Navy Veterans, and active military.

LEAPS workforce development

Our eight training programs support the advancement of **microgrid project funders/managers**, **engineers**, **technicians**, **operators**, and **installers** through in-person workshops and online content delivery.

Entity	Training	Delivery	Capacity	Trained so Far	Comments
ASU	Microgrid Boot Camp	In-person	20/session	80	Five days, offered twice per year at ASU
ASU	Microgrid Master Class	In-person	Varies	100	One or two days, offered anywhere
ASU/HNEI	Grid Resiliency	In-person	20/session	Upcoming	Two days, offered once per year at ASU
ASU	Microgrid Design and Control	In-person	25/session	25	Three-credit special topics course at ASU
IncSys	Grid Cybersecurity	In-person	25/session	20	Two days, offered once per year at ASU
IncSys	Power4Vets	Online	10/session	20	90-hours online, available anytime
ASU/XENDEE	Microgrid Design	Online	N/A	Upcoming	20-hours online, available anytime
BlockFrame	New Cyber Frontier	Online	N/A	No data	Online cybersecurity show, monthly

ASU collaborate with **HNEI**, **IncSys**, **XENDEE**, and **BlockFrame** to create and deliver training materials and programs to benefit civilians, Navy Veterans, and active military.

Microgrid boot camp for civilian and military applications

Challenge: Rapidly growing market needs require short courses and continuing education credits.

Solution: One-week introductory course for design, installation, operation, maintenance, and safety.

Infrastructure basics

Simulation-based design

Hands-on integration

Interactive tours

Microgrid boot camp for civilian and military applications

Monday	Tuesday	Wednesday	Thursday	Friday	
Introduction	<u>On-grid and Off-grid</u> Systems in HOMER	Hands-on Integration Microgrid Test Bed	Distribution Network Simulation & Analysis	Walking Tours of Local Facilities	
 Basics of microgrids and energy infrastructure Small-scale hands- on activity 	 System sizing and component selection Applying HOMER to personal case study Mobile microgrids 	 Safety training System deployment and testing Primary controls Controller configuration 	 Power flow analysis QSTS analysis Short circuit analysis Voltage stability and asset sizing/placement 	 Power plant tour (SRP Santan Generating Station – 1.2 GW) Grid-operator control center tour 	

Video: https://vimeo.com/285148179/69793233bd

Cyber and kinetic vulnerabilities in electrical infrastructure

Challenge: Cybersecurity threats rapidly evolving with uncertain entry points and impacts.

Solution: Real-time simulations with regional assets and transmission lines; competitive attack-defend.

Nathan G Johnson @johnsonasu

Training in #CyberAttack and #CyberSecurity of electric grids @ASU with IncSys and participation from @SRPconnect, @apsFYI, @USNavyResearch

Ruben Robles @RubenRobles18

It was an honor and a privilege to talk with the engineers of tomorrow @ASU about defending #criticalinfrastructure #utilities #ICS #SCADA

Nathan G Johnson @johnsonasu Great talk on #cybersecurity and #cyberdefense by @RubenRobles18 at @ASU @asu_gsi @ASUEngineering @SRPconnect thanks!!!

Scaling to meet a growing global workforce

Challenge: A \$40B market without sufficient trained personnel to realize market potential. **Solution:** 200+ hours of classroom, simulation, and hands-on curriculum.

Online Microgrid and DER Design Tool and Program Management

Grid Modernization and Microgrid Test Bed

Mobile Microgrid Training Platform

Video: https://vimeo.com/252371023/80fe83fc61

Microgrid master classes

Event Agenda (example)

Introductions and Overview				
Dr. Nate Johnson, Assistant Professor, ASU				
Introduction to XENDEE				
Shammya Saha, Graduate Research Assistant, ASU				
Lunch Break				
Split into three groups and switch every hour:				
Group 1: Mobile Microgrid Training Platform				
Alexander Mobley, Microgrid Testbed Manager, ASU				
Group 2: Primary Control Demonstration				
James Nelson, Graduate Research Assistant, ASU				
Group 3: Mobile Training Toolkits				
Shammya Saha				
Closing Discussion				
Nate Johnson				

- Partnership with GOEE and EdPlus for online content development
- Partnership with XENDEE for design software
- Microgrid Design Process curriculum

- **Overview**
- Basics of energy infrastructure
- Terminology
- On-grid architectures (and use cases)
- Off-grid architectures (and use cases)

- Partnership with GOEE and EdPlus for online content development
- Partnership with XENDEE for design software
- Microgrid Design Process curriculum

Overview

- Basics of energy infrastructure
- Terminology
- On-grid architectures (and use cases)
- Off-grid architectures (and use cases)

- Partnership with GOEE and EdPlus for online content development
- Partnership with XENDEE for design software
- Microgrid Design Process curriculum

Overview

- Basics of energy infrastructure
- Terminology
- On-grid architectures (and use cases)
- Off-grid architectures (and use cases)

- Partnership with GOEE and EdPlus for online content development
- Partnership with XENDEE for design software
- Microgrid Design Process curriculum

Overview

- Basics of energy infrastructure
- Terminology
- On-grid architectures (and use cases)
- Off-grid architectures (and use cases)

- Partnership with GOEE and EdPlus for online content development
- Partnership with XENDEE for design software
- Microgrid Design Process curriculum

QSTS Power Flow

- **Overview**
- Basics of energy infrastructure
- Terminology
- On-grid architectures (and use cases)
- Off-grid architectures (and use cases)

Starting with 18 hours of content (Fall 2018). Includes videos and activities on the following topics:

Basics of Microgrids (6 hours)

- Basics of Energy Infrastructure (1 hour)
- Terminology (1 hour)
- On-grid Architectures (2 hours)
- Off-grid Architectures (2 hours)

Selecting & Sizing Assets in XENDEE (4 hours)

- Economic and Technical Feasibility (2 hours)
- Financial Analysis of On-grid and Off-grid Systems (2 hours)

Power Flow in XENDEE (5 hours)

Power Flow Analysis (5 hours)

Commissioning/Deployment (3 hours)

- Inverter Setup (1.5 hours)
- Microgrid Integration (1.5 hours)

Supporting Entities and Partners

Thank you!

For more information, please contact:

Multi-agent Facilitation of Transactive Energy Networks

